Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast.
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.
منابع مشابه
Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p.
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p bec...
متن کاملSymmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Complex
BACKGROUND In 1952, Alan Turing suggested that spatial patterns could arise from homogeneous starting conditions by feedback amplification of stochastic fluctuations. One example of such self-organization, called symmetry breaking, involves spontaneous cell polarization in the absence of spatial cues. The conserved GTPase Cdc42p is essential for both guided and spontaneous polarization, and in ...
متن کاملSite-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating.
Receptor-mediated cell polarization via heterotrimeric G-proteins induces cytoskeletal rearrangements in a variety of organisms. In yeast, Far1p is required for orienting cell growth towards the mating partner by linking activated Gbetagamma to the guanine-nucleotide exchange factor (GEF) Cdc24p, which activates the Rho-type GTPase Cdc42p. Here we investigated the role of Far1p in the regulatio...
متن کاملThe guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites
Generation of cellular asymmetry or cell polarity plays a critical role in cell-cycle-regulated morphogenetic processes involving the actin cytoskeleton. The GTPase Cdc42 regulates actin rearrangements and signal transduction pathways in all eukaryotic cells [1], and the temporal and spatial regulation of Cdc42p depends on the activity and targeting of its guanine-nucleotide exchange factor (GE...
متن کاملPolarization of cell growth in yeast. I. Establishment and maintenance of polarity states.
The ability to polarize is a fundamental property of cells. The yeast Saccharomyces cerevisiae has proven to be a fertile ground for dissecting the molecular mechanisms that regulate cell polarity during growth. Here we discuss the signaling pathways that regulate polarity. In the second installment of this two-part commentary, which appears in the next issue of Journal of Cell Science, we disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2000